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I N regard to the criticisms of my paper,,2 by Dr. Stewart 
Paterson3.' I find, after looking more carefully into my 

method (a) solution of the equations of the hydrodynamic 
theory, that Dr. Paterson is correct in pointing out that 
method (a) is an unsatisfactory solution. In carrying out 
the solutions by method (a), I was including, rather naively, 
a step which had been introduced as a convenient short cut 
in earlier studies by method (b) which, a lthough I failed 
to realize it, actually did depend on the nature of the solu
tions of method (b). The data reported in my paper,' while 
calculated by the procedure in question (although not as 
described in reference 1) are actually identical with those 
which would be obtained by the direct application of 
method (b). The slight difference between the two curves 
of Fig. 1 of my paper was due to the use of slightly different 

detonation velocities. This was, in fact, mentioned in the 
paper of reference 1. As far as I am concerned, Dr. Pater
son and I are now in agreement on a ll essential points of 
discussion. As a matter of fact, the recent work of Paterson6 

together with the arguments in reference 1, I believe, 
present strong evidence for the validity of the equation of 
state 

pv=nRT+Ol(V)P 

for gases under the conditions encountered in the detona
tion of solid and liquid explosives. 

1 Melvin A. Cook, J. Chem. Phys. 15,518 (1947). 
'Melvin A. Cook, J. Chem. Phys. 16, 554 (1948). 
• Stewart Paterson, J. Chem. Phys. 16, 159 (1948). 
• Stewart Paterson, J. Chem. Phys. 16, 847 (1948). 
• Stewart Paterson, Research I, 221 (1948). 
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T HIS note is in reply to comments by S. Paterson1 on 
my recent article.' Paterson first challenged the 

(supposed) claim that method (a) of my article is an 
"exact" solution. As a matter of fact, no such claim was 
made. In the summary of the paper I referred to method 
(a) as " ... in principle at least, a general solution." 
However, I hastened to add that, in fact, a general solution 
was impossible because of the necessity of postulating a 
particular form of a(T,v) in evaluating the detonation 
temperature. Paterson merely restated my own arguments 
in pointing out that" ... (detonation) velocities alone do 
not allow us to discriminate between such a solution 
(i.e., of a(v) from velocity data) and any alternate solution, 
e.g., Kistiakowsky and Wilson's in which a depends also 
on T." Thus my article stated that "it is quite evident 
that the detonation temperature is really the only detona
tion property which may be used to provide experimental 
information on the accuracy of the various equations of 
state ... all other quantities being relatively insensitive 
to the particular equation of state employed." Realizing 
the limitations of the hydrodynamic theory in providing 
by itself an unambiguous equation of state, I considered 
it necessary to bring in several external evidences to sup
port the a(v) approximation and discussed the agreement 
between methods (a) and (b) as supporting evidence. It 
was required by sufficiently strong implications that the 
final answer should rest entirely on comparisons between 
experimental and theoretical detonation temperatures in 
view of the impossibility of evaluating the heat capacity 
(Eq. (17» from detonation velocities and the hydro
dynamic theory alone. 

Paterson is in error in his statement that ignoring Eq. (9) 
in method (a) "amounts to discarding the Chapman
J ouguet condition." As a matter of fact, Eq . (11) is nothing 
more than the Chapman-Jouguet postulate allowing the 
completely justifiable approximation P.£:5.P,-Pl. That is, 
the Chapman-Jouguet postulate is expressed in the equa
tion 

- (dp./dv.), = (P,-PI)/(Vl-V,) = P2f3 /(v. -a) (a) 

which, upon canceling P,-PI with p., gives Eq. (11). 
Paterson argued that, since Eq. (13) follows from Eqs. 

(11) and (12), one does not obtain a uniq~e solution by 
solving Eqs. (11), (12), (13), and (16) for the four inde
pendent variables T., v., a, and fJ . While it is true that 
Eq. (11) may be derived from (12) and (13), this is made 
possible only by virtue of the approximation P.»PI; the 

four equations are in reality independent. The five inde
pendent equations are (1), (2), (3), (4), and (6). Under 
the approximation P.»Pl and employing the auxiliary 
Eq. (8), Eq. (11) is equivalent to Eq. (4); Eq. (12) follows 
from (1) and (6); Eq. (13) may be derived from (1), (2), 
and (6); Eq. (16) follows from (3). Hence, it is only the 
very small value of PI relative to p. that makes it appear 
that Eqs. (11), (12), (13), and (16) are not independent. 
Paterson was evidently troubled by the consideration that 
six independent unknown variables W, T . , a, fJ, p., v. 
were evaluated from five independent equations, evi
dently overlooking or ignoring the fact that the condition 
P.»PI is, in fact, the sixth condition needed to complete 
the solution. I fail to see, therefore, why the solution ob
tained by solving the four Eqs. (11), (12), (13), and (16) 
for fJ, a, V" T. by the method of successive approximations 
should not be a unique solution. 

Paterson suggested that since method (b) preceded 
(a) in the development of the theory, the results obtained 
in method (b) would influence those in method (a). Such a 
suggestion could have been easily evaluated by Paterson 
himself if he had been wi\1ing to carry out a few series of 
approximations starting with different assumed values of fJ. 

Paterson's argument that a step-by-step integration of 
the fifth equation of the theory (Eq. (a) above) leads to an 
entire family of a(v) curves is incorrect because it fails to 
recognize that in this problem we are dealing with well
defined thermodynamic functions. Equation (9) derived 
from the laws of thermodynamics and the assumed equa
tion of state gives fJ as follows : 

f3 = (C.+R)/C.- (aa/av.).+ (aE/aV)TnR/C.p.. (b) 

Since no critical points are involved, obviously the two 
functions a and (aE/aV)T are single valued in v, and one 
should thus expect fJ to be a single-valued function of v. 
However, if one needs an additional argument, the integra
tion constant referred to by Paterson may be established 
as zero from the fact that Eq. (b) must reduce to 
fJ= Cp/C.=-y for the case where factors for 'non-ideality 
become vanishingly small, a condition which applies in 
the detonation of gaseous explosives. In fact, Paterson's 
argument should apply equally weJl to any assumed 
equation of state but is invalidated for one thing by the 
experimental verification of the hydrodynamic theory for 
gaseous explosives. 

1 S. Paterson, J. Chem. Phys. 16, 159 (1948). 
'M. A. Cook, J. Chem. Phys. 15. 518 (1947). 
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